MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. 6005 Aluminum

Both 5754 aluminum and 6005 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is 6005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
90 to 95
Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 2.0 to 19
9.5 to 17
Fatigue Strength, MPa 66 to 140
55 to 95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 120 to 190
120 to 210
Tensile Strength: Ultimate (UTS), MPa 200 to 330
190 to 310
Tensile Strength: Yield (Proof), MPa 80 to 280
100 to 280

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 600
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
180 to 200
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
54
Electrical Conductivity: Equal Weight (Specific), % IACS 110
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.7
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
27 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
77 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 21 to 34
20 to 32
Strength to Weight: Bending, points 28 to 39
28 to 38
Thermal Diffusivity, mm2/s 54
74 to 83
Thermal Shock Resistance, points 8.9 to 14
8.6 to 14

Alloy Composition

Aluminum (Al), % 94.2 to 97.4
97.5 to 99
Chromium (Cr), % 0 to 0.3
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 0.35
Magnesium (Mg), % 2.6 to 3.6
0.4 to 0.6
Manganese (Mn), % 0 to 0.5
0 to 0.1
Silicon (Si), % 0 to 0.4
0.6 to 0.9
Titanium (Ti), % 0 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.15