MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. EN 1.0031 Steel

5754 aluminum belongs to the aluminum alloys classification, while EN 1.0031 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is EN 1.0031 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
89
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.0 to 19
28
Fatigue Strength, MPa 66 to 140
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 190
200
Tensile Strength: Ultimate (UTS), MPa 200 to 330
310
Tensile Strength: Yield (Proof), MPa 80 to 280
210

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
53
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
78
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
120
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 21 to 34
11
Strength to Weight: Bending, points 28 to 39
13
Thermal Diffusivity, mm2/s 54
14
Thermal Shock Resistance, points 8.9 to 14
9.8

Alloy Composition

Aluminum (Al), % 94.2 to 97.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
98.8 to 100
Magnesium (Mg), % 2.6 to 3.6
0
Manganese (Mn), % 0 to 0.5
0 to 0.7
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0