MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. EN 1.1221 Steel

5754 aluminum belongs to the aluminum alloys classification, while EN 1.1221 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
210 to 250
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.0 to 19
10 to 21
Fatigue Strength, MPa 66 to 140
240 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 120 to 190
450 to 520
Tensile Strength: Ultimate (UTS), MPa 200 to 330
730 to 870
Tensile Strength: Yield (Proof), MPa 80 to 280
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
48
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
410 to 800
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 21 to 34
26 to 31
Strength to Weight: Bending, points 28 to 39
23 to 26
Thermal Diffusivity, mm2/s 54
13
Thermal Shock Resistance, points 8.9 to 14
23 to 28

Alloy Composition

Aluminum (Al), % 94.2 to 97.4
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0 to 0.3
0 to 0.4
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
97.1 to 98.8
Magnesium (Mg), % 2.6 to 3.6
0
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants