MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. EN 1.8870 Steel

5754 aluminum belongs to the aluminum alloys classification, while EN 1.8870 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is EN 1.8870 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
180
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.0 to 19
21
Fatigue Strength, MPa 66 to 140
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 190
380
Tensile Strength: Ultimate (UTS), MPa 200 to 330
610
Tensile Strength: Yield (Proof), MPa 80 to 280
450

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1180
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
120
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 21 to 34
22
Strength to Weight: Bending, points 28 to 39
20
Thermal Diffusivity, mm2/s 54
10
Thermal Shock Resistance, points 8.9 to 14
18

Alloy Composition

Aluminum (Al), % 94.2 to 97.4
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.3
0 to 0.5
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
95.1 to 100
Magnesium (Mg), % 2.6 to 3.6
0
Manganese (Mn), % 0 to 0.5
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0 to 0.030
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0 to 0.15
0