MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. EN AC-46500 Aluminum

Both 5754 aluminum and EN AC-46500 aluminum are aluminum alloys. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
91
Elastic (Young's, Tensile) Modulus, GPa 68
74
Elongation at Break, % 2.0 to 19
1.0
Fatigue Strength, MPa 66 to 140
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 200 to 330
270
Tensile Strength: Yield (Proof), MPa 80 to 280
160

Thermal Properties

Latent Heat of Fusion, J/g 400
520
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 600
520
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
100
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
26
Electrical Conductivity: Equal Weight (Specific), % IACS 110
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.7
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 21 to 34
26
Strength to Weight: Bending, points 28 to 39
32
Thermal Diffusivity, mm2/s 54
41
Thermal Shock Resistance, points 8.9 to 14
12

Alloy Composition

Aluminum (Al), % 94.2 to 97.4
77.9 to 90
Chromium (Cr), % 0 to 0.3
0 to 0.15
Copper (Cu), % 0 to 0.1
2.0 to 4.0
Iron (Fe), % 0 to 0.4
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 2.6 to 3.6
0.050 to 0.55
Manganese (Mn), % 0 to 0.5
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Silicon (Si), % 0 to 0.4
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 3.0
Residuals, % 0
0 to 0.25