MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. CC140C Copper

5754 aluminum belongs to the aluminum alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
110
Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 2.0 to 19
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 200 to 330
340
Tensile Strength: Yield (Proof), MPa 80 to 280
230

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 650
1100
Melting Onset (Solidus), °C 600
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
310
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
77
Electrical Conductivity: Equal Weight (Specific), % IACS 110
78

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.7
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
34
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 21 to 34
10
Strength to Weight: Bending, points 28 to 39
12
Thermal Diffusivity, mm2/s 54
89
Thermal Shock Resistance, points 8.9 to 14
12

Alloy Composition

Aluminum (Al), % 94.2 to 97.4
0
Chromium (Cr), % 0 to 0.3
0.4 to 1.2
Copper (Cu), % 0 to 0.1
98.8 to 99.6
Iron (Fe), % 0 to 0.4
0
Magnesium (Mg), % 2.6 to 3.6
0
Manganese (Mn), % 0 to 0.5
0
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0