MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. C41500 Brass

5754 aluminum belongs to the aluminum alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 2.0 to 19
2.0 to 42
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 120 to 190
220 to 360
Tensile Strength: Ultimate (UTS), MPa 200 to 330
340 to 560
Tensile Strength: Yield (Proof), MPa 80 to 280
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 650
1030
Melting Onset (Solidus), °C 600
1010
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.7
2.8
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 21 to 34
11 to 18
Strength to Weight: Bending, points 28 to 39
12 to 17
Thermal Diffusivity, mm2/s 54
37
Thermal Shock Resistance, points 8.9 to 14
12 to 20

Alloy Composition

Aluminum (Al), % 94.2 to 97.4
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
89 to 93
Iron (Fe), % 0 to 0.4
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 2.6 to 3.6
0
Manganese (Mn), % 0 to 0.5
0
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 0
1.5 to 2.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
4.2 to 9.5
Residuals, % 0
0 to 0.5