MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. 364.0 Aluminum

Both 6005 aluminum and 364.0 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 9.5 to 17
7.5
Fatigue Strength, MPa 55 to 95
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 120 to 210
200
Tensile Strength: Ultimate (UTS), MPa 190 to 310
300
Tensile Strength: Yield (Proof), MPa 100 to 280
160

Thermal Properties

Latent Heat of Fusion, J/g 410
520
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 610
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 180 to 200
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
30
Electrical Conductivity: Equal Weight (Specific), % IACS 180
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 36
19
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 550
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
53
Strength to Weight: Axial, points 20 to 32
31
Strength to Weight: Bending, points 28 to 38
38
Thermal Diffusivity, mm2/s 74 to 83
51
Thermal Shock Resistance, points 8.6 to 14
14

Alloy Composition

Aluminum (Al), % 97.5 to 99
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Chromium (Cr), % 0 to 0.1
0.25 to 0.5
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.35
0 to 1.5
Magnesium (Mg), % 0.4 to 0.6
0.2 to 0.4
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0.6 to 0.9
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0 to 0.15
Residuals, % 0
0 to 0.15