MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. ASTM Grade HL Steel

6005 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 95
150
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.5 to 17
11
Fatigue Strength, MPa 55 to 95
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 190 to 310
500
Tensile Strength: Yield (Proof), MPa 100 to 280
270

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 610
1340
Specific Heat Capacity, J/kg-K 900
490
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
4.5
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1180
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 36
48
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 550
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 32
18
Strength to Weight: Bending, points 28 to 38
18
Thermal Shock Resistance, points 8.6 to 14
11

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0 to 0.1
28 to 32
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
40.8 to 53.8
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 0.9
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0