MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. EN 1.3539 Steel

6005 aluminum belongs to the aluminum alloys classification, while EN 1.3539 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is EN 1.3539 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 95
200
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 190 to 310
670

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 160
450
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180 to 200
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 180
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.2
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1180
57

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 32
24
Strength to Weight: Bending, points 28 to 38
22
Thermal Diffusivity, mm2/s 74 to 83
11
Thermal Shock Resistance, points 8.6 to 14
20

Alloy Composition

Aluminum (Al), % 97.5 to 99
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0 to 0.1
1.8 to 2.1
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.35
95.2 to 96.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0.8 to 1.1
Molybdenum (Mo), % 0
0.5 to 0.6
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.6 to 0.9
0.4 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0