MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. CC140C Copper

6005 aluminum belongs to the aluminum alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 95
110
Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 9.5 to 17
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 190 to 310
340
Tensile Strength: Yield (Proof), MPa 100 to 280
230

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 650
1100
Melting Onset (Solidus), °C 610
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 180 to 200
310
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
77
Electrical Conductivity: Equal Weight (Specific), % IACS 180
78

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 36
34
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 550
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 20 to 32
10
Strength to Weight: Bending, points 28 to 38
12
Thermal Diffusivity, mm2/s 74 to 83
89
Thermal Shock Resistance, points 8.6 to 14
12

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Chromium (Cr), % 0 to 0.1
0.4 to 1.2
Copper (Cu), % 0 to 0.1
98.8 to 99.6
Iron (Fe), % 0 to 0.35
0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0.6 to 0.9
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0