MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. C48200 Brass

6005 aluminum belongs to the aluminum alloys classification, while C48200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 9.5 to 17
15 to 40
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 120 to 210
260 to 300
Tensile Strength: Ultimate (UTS), MPa 190 to 310
400 to 500
Tensile Strength: Yield (Proof), MPa 100 to 280
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 160
120
Melting Completion (Liquidus), °C 650
900
Melting Onset (Solidus), °C 610
890
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 180 to 200
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
26
Electrical Conductivity: Equal Weight (Specific), % IACS 180
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 36
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 550
120 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 20 to 32
14 to 17
Strength to Weight: Bending, points 28 to 38
15 to 17
Thermal Diffusivity, mm2/s 74 to 83
38
Thermal Shock Resistance, points 8.6 to 14
13 to 16

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
59 to 62
Iron (Fe), % 0 to 0.35
0 to 0.1
Lead (Pb), % 0
0.4 to 1.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0.6 to 0.9
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
35.5 to 40.1
Residuals, % 0
0 to 0.4