MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. S31266 Stainless Steel

6005 aluminum belongs to the aluminum alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 9.5 to 17
40
Fatigue Strength, MPa 55 to 95
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 120 to 210
590
Tensile Strength: Ultimate (UTS), MPa 190 to 310
860
Tensile Strength: Yield (Proof), MPa 100 to 280
470

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 180 to 200
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.3
6.5
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 36
290
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 550
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 32
29
Strength to Weight: Bending, points 28 to 38
24
Thermal Diffusivity, mm2/s 74 to 83
3.1
Thermal Shock Resistance, points 8.6 to 14
18

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
23 to 25
Copper (Cu), % 0 to 0.1
1.0 to 2.5
Iron (Fe), % 0 to 0.35
34.1 to 46
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.6 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0