MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. S32001 Stainless Steel

6005 aluminum belongs to the aluminum alloys classification, while S32001 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is S32001 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.5 to 17
28
Fatigue Strength, MPa 55 to 95
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 120 to 210
450
Tensile Strength: Ultimate (UTS), MPa 190 to 310
690
Tensile Strength: Yield (Proof), MPa 100 to 280
510

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 160
970
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 610
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180 to 200
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 36
180
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 550
660
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 32
25
Strength to Weight: Bending, points 28 to 38
23
Thermal Diffusivity, mm2/s 74 to 83
4.0
Thermal Shock Resistance, points 8.6 to 14
19

Alloy Composition

Aluminum (Al), % 97.5 to 99
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19.5 to 21.5
Copper (Cu), % 0 to 0.1
0 to 1.0
Iron (Fe), % 0 to 0.35
66.6 to 75.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
4.0 to 6.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
1.0 to 3.0
Nitrogen (N), % 0
0.050 to 0.17
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0