MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. ACI-ASTM CD4MCu Steel

6005A aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD4MCu steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is ACI-ASTM CD4MCu steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 8.6 to 17
18
Fatigue Strength, MPa 55 to 110
340
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 190 to 300
770
Tensile Strength: Yield (Proof), MPa 100 to 270
550

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180 to 190
17
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
130
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 20 to 30
28
Strength to Weight: Bending, points 27 to 36
24
Thermal Diffusivity, mm2/s 72 to 79
4.5
Thermal Shock Resistance, points 8.6 to 13
21

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.3
24.5 to 26.5
Copper (Cu), % 0 to 0.3
2.8 to 3.3
Iron (Fe), % 0 to 0.35
59.9 to 66.3
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.3
Nickel (Ni), % 0
4.8 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0