MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. AISI 384 Stainless Steel

6005A aluminum belongs to the aluminum alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 190 to 300
480

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180 to 190
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.7
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1180
150

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20 to 30
17
Strength to Weight: Bending, points 27 to 36
17
Thermal Diffusivity, mm2/s 72 to 79
4.3
Thermal Shock Resistance, points 8.6 to 13
11

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.3
15 to 17
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.35
60.9 to 68
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0
17 to 19
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0