MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. ASTM A227 Spring Steel

6005A aluminum belongs to the aluminum alloys classification, while ASTM A227 spring steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is ASTM A227 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 8.6 to 17
12
Fatigue Strength, MPa 55 to 110
900 to 1160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 120 to 180
1030 to 1330
Tensile Strength: Ultimate (UTS), MPa 190 to 300
1720 to 2220
Tensile Strength: Yield (Proof), MPa 100 to 270
1430 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180 to 190
52
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
200 to 260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20 to 30
61 to 79
Strength to Weight: Bending, points 27 to 36
41 to 48
Thermal Diffusivity, mm2/s 72 to 79
14
Thermal Shock Resistance, points 8.6 to 13
55 to 71

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0.45 to 0.85
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.35
97.4 to 99.1
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0.3 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 0.9
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants