MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. AWS BMg-1

6005A aluminum belongs to the aluminum alloys classification, while AWS BMg-1 belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is AWS BMg-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
47
Elongation at Break, % 8.6 to 17
3.8
Fatigue Strength, MPa 55 to 110
72
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
18
Shear Strength, MPa 120 to 180
100
Tensile Strength: Ultimate (UTS), MPa 190 to 300
180
Tensile Strength: Yield (Proof), MPa 100 to 270
110

Thermal Properties

Latent Heat of Fusion, J/g 410
350
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 600
440
Specific Heat Capacity, J/kg-K 900
980
Thermal Conductivity, W/m-K 180 to 190
76
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
11
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
55

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.8
Embodied Carbon, kg CO2/kg material 8.3
22
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
980

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
5.9
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
66
Strength to Weight: Axial, points 20 to 30
27
Strength to Weight: Bending, points 27 to 36
39
Thermal Diffusivity, mm2/s 72 to 79
43
Thermal Shock Resistance, points 8.6 to 13
10

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
8.3 to 9.7
Beryllium (Be), % 0
0.00020 to 0.00080
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0 to 0.050
Iron (Fe), % 0 to 0.35
0 to 0.0050
Magnesium (Mg), % 0.4 to 0.7
86.1 to 89.8
Manganese (Mn), % 0 to 0.5
0.15 to 1.5
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0.5 to 0.9
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
1.7 to 2.3
Residuals, % 0
0 to 0.3