MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. AWS E110C-K4

6005A aluminum belongs to the aluminum alloys classification, while AWS E110C-K4 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is AWS E110C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 8.6 to 17
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 190 to 300
850
Tensile Strength: Yield (Proof), MPa 100 to 270
780

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180 to 190
41
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1180
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
140
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
1600
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20 to 30
30
Strength to Weight: Bending, points 27 to 36
25
Thermal Diffusivity, mm2/s 72 to 79
11
Thermal Shock Resistance, points 8.6 to 13
25

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.3
0.15 to 0.65
Copper (Cu), % 0 to 0.3
0 to 0.35
Iron (Fe), % 0 to 0.35
92.1 to 98.4
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 0.9
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5