MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. EN 1.1132 Steel

6005A aluminum belongs to the aluminum alloys classification, while EN 1.1132 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is EN 1.1132 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 8.6 to 17
12 to 24
Fatigue Strength, MPa 55 to 110
180 to 280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 180
260 to 310
Tensile Strength: Ultimate (UTS), MPa 190 to 300
370 to 490
Tensile Strength: Yield (Proof), MPa 100 to 270
240 to 400

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180 to 190
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
38 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
160 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20 to 30
13 to 17
Strength to Weight: Bending, points 27 to 36
15 to 18
Thermal Diffusivity, mm2/s 72 to 79
14
Thermal Shock Resistance, points 8.6 to 13
12 to 16

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0.13 to 0.17
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 0 to 0.35
98.6 to 99.57
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 0.9
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0