MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. EN 2.4816 Nickel

6005A aluminum belongs to the aluminum alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 8.6 to 17
34
Fatigue Strength, MPa 55 to 110
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 120 to 180
470
Tensile Strength: Ultimate (UTS), MPa 190 to 300
700
Tensile Strength: Yield (Proof), MPa 100 to 270
270

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 600
1320
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 180 to 190
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
9.0
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
190
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 20 to 30
23
Strength to Weight: Bending, points 27 to 36
21
Thermal Diffusivity, mm2/s 72 to 79
3.8
Thermal Shock Resistance, points 8.6 to 13
20

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.3
14 to 17
Copper (Cu), % 0 to 0.3
0 to 0.5
Iron (Fe), % 0 to 0.35
6.0 to 10
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0
72 to 80
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 0.9
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0