MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. EN-MC65120 Magnesium

6005A aluminum belongs to the aluminum alloys classification, while EN-MC65120 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is EN-MC65120 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
45
Elongation at Break, % 8.6 to 17
3.1
Fatigue Strength, MPa 55 to 110
80
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
17
Shear Strength, MPa 120 to 180
92
Tensile Strength: Ultimate (UTS), MPa 190 to 300
160
Tensile Strength: Yield (Proof), MPa 100 to 270
110

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 600
520
Specific Heat Capacity, J/kg-K 900
970
Thermal Conductivity, W/m-K 180 to 190
100
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
25
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
1.9
Embodied Carbon, kg CO2/kg material 8.3
25
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1180
930

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
4.4
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
62
Strength to Weight: Axial, points 20 to 30
23
Strength to Weight: Bending, points 27 to 36
34
Thermal Diffusivity, mm2/s 72 to 79
56
Thermal Shock Resistance, points 8.6 to 13
9.8

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0 to 0.030
Iron (Fe), % 0 to 0.35
0 to 0.010
Magnesium (Mg), % 0.4 to 0.7
91.8 to 95.1
Manganese (Mn), % 0 to 0.5
0 to 0.15
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0.5 to 0.9
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Unspecified Rare Earths, % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.2
2.0 to 3.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010