MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. Grade C-5 Titanium

6005A aluminum belongs to the aluminum alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 8.6 to 17
6.7
Fatigue Strength, MPa 55 to 110
510
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 190 to 300
1000
Tensile Strength: Yield (Proof), MPa 100 to 270
940

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 650
1610
Melting Onset (Solidus), °C 600
1560
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 180 to 190
7.1
Thermal Expansion, µm/m-K 23
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.4
Embodied Carbon, kg CO2/kg material 8.3
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
66
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 20 to 30
63
Strength to Weight: Bending, points 27 to 36
50
Thermal Diffusivity, mm2/s 72 to 79
2.9
Thermal Shock Resistance, points 8.6 to 13
71

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.35
0 to 0.4
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 0.5 to 0.9
0
Titanium (Ti), % 0 to 0.1
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4