MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. Nickel 686

6005A aluminum belongs to the aluminum alloys classification, while nickel 686 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 8.6 to 17
51
Fatigue Strength, MPa 55 to 110
410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 120 to 180
560
Tensile Strength: Ultimate (UTS), MPa 190 to 300
780
Tensile Strength: Yield (Proof), MPa 100 to 270
350

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 600
1340
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 180 to 190
9.8
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
320
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 20 to 30
24
Strength to Weight: Bending, points 27 to 36
21
Thermal Diffusivity, mm2/s 72 to 79
2.6
Thermal Shock Resistance, points 8.6 to 13
21

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.3
19 to 23
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.35
0 to 5.0
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
49.5 to 63
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 0.9
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0