MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. C34000 Brass

6005A aluminum belongs to the aluminum alloys classification, while C34000 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is C34000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 190 to 300
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 650
930
Melting Onset (Solidus), °C 600
890
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 180 to 190
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
26
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1180
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 20 to 30
11 to 22
Strength to Weight: Bending, points 27 to 36
13 to 21
Thermal Diffusivity, mm2/s 72 to 79
37
Thermal Shock Resistance, points 8.6 to 13
11 to 22

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
62 to 65
Iron (Fe), % 0 to 0.35
0 to 0.1
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0
Silicon (Si), % 0.5 to 0.9
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
33 to 37.2
Residuals, % 0
0 to 0.4