MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. C49300 Brass

6005A aluminum belongs to the aluminum alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 8.6 to 17
4.5 to 20
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 120 to 180
270 to 290
Tensile Strength: Ultimate (UTS), MPa 190 to 300
430 to 520
Tensile Strength: Yield (Proof), MPa 100 to 270
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 650
880
Melting Onset (Solidus), °C 600
840
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 180 to 190
88
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
15
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
220 to 800
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 20 to 30
15 to 18
Strength to Weight: Bending, points 27 to 36
16 to 18
Thermal Diffusivity, mm2/s 72 to 79
29
Thermal Shock Resistance, points 8.6 to 13
14 to 18

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
58 to 62
Iron (Fe), % 0 to 0.35
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0.5 to 0.9
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
30.6 to 40.5
Residuals, % 0
0 to 0.5