MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. S31277 Stainless Steel

6005A aluminum belongs to the aluminum alloys classification, while S31277 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is S31277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 8.6 to 17
45
Fatigue Strength, MPa 55 to 110
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 120 to 180
600
Tensile Strength: Ultimate (UTS), MPa 190 to 300
860
Tensile Strength: Yield (Proof), MPa 100 to 270
410

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.7
Embodied Energy, MJ/kg 150
90
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
320
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20 to 30
29
Strength to Weight: Bending, points 27 to 36
25
Thermal Shock Resistance, points 8.6 to 13
19

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.3
20.5 to 23
Copper (Cu), % 0 to 0.3
0.5 to 1.5
Iron (Fe), % 0 to 0.35
35.5 to 46.2
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 3.0
Molybdenum (Mo), % 0
6.5 to 8.0
Nickel (Ni), % 0
26 to 28
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 0.9
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0