MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. EN 1.4034 Stainless Steel

6008 aluminum belongs to the aluminum alloys classification, while EN 1.4034 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is EN 1.4034 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.1 to 17
11 to 14
Fatigue Strength, MPa 55 to 88
230 to 400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 120 to 170
420 to 540
Tensile Strength: Ultimate (UTS), MPa 200 to 290
690 to 900
Tensile Strength: Yield (Proof), MPa 100 to 220
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 180
770
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 620
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
30
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 160
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.5
2.0
Embodied Energy, MJ/kg 160
27
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 28
81 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 360
400 to 1370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 21 to 29
25 to 32
Strength to Weight: Bending, points 28 to 35
22 to 27
Thermal Diffusivity, mm2/s 77
8.1
Thermal Shock Resistance, points 9.0 to 13
24 to 32

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0 to 0.3
12.5 to 14.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.35
83 to 87.1
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0