MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. EN 1.4729 Stainless Steel

6008 aluminum belongs to the aluminum alloys classification, while EN 1.4729 stainless steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is EN 1.4729 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.1 to 17
15
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 180
850
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 620
1380
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 190
24
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 160
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.5
2.1
Embodied Energy, MJ/kg 160
29
Embodied Water, L/kg 1180
100

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Thermal Diffusivity, mm2/s 77
6.5

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.3
12 to 14
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.35
80.4 to 86.7
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 0.9
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0