MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. EN 1.5520 Steel

6008 aluminum belongs to the aluminum alloys classification, while EN 1.5520 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is EN 1.5520 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.1 to 17
11 to 21
Fatigue Strength, MPa 55 to 88
210 to 300
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 170
290 to 340
Tensile Strength: Ultimate (UTS), MPa 200 to 290
410 to 1410
Tensile Strength: Yield (Proof), MPa 100 to 220
300 to 480

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
50
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 160
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 28
42 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 360
240 to 600
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 21 to 29
15 to 50
Strength to Weight: Bending, points 28 to 35
16 to 36
Thermal Diffusivity, mm2/s 77
13
Thermal Shock Resistance, points 9.0 to 13
12 to 41

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 0 to 0.35
97.7 to 98.9
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 0.9
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0