MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. EN 1.5536 Steel

6008 aluminum belongs to the aluminum alloys classification, while EN 1.5536 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is EN 1.5536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 200 to 290
460 to 1600

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
49
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 160
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1180
48

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 21 to 29
16 to 57
Strength to Weight: Bending, points 28 to 35
17 to 39
Thermal Diffusivity, mm2/s 77
13
Thermal Shock Resistance, points 9.0 to 13
14 to 47

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.25 to 0.3
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 0 to 0.35
97.6 to 98.7
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 0.9
0.15 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0