MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. EN 2.4633 Nickel

6008 aluminum belongs to the aluminum alloys classification, while EN 2.4633 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is EN 2.4633 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1 to 17
34
Fatigue Strength, MPa 55 to 88
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 120 to 170
510
Tensile Strength: Ultimate (UTS), MPa 200 to 290
760
Tensile Strength: Yield (Proof), MPa 100 to 220
310

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 620
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 160
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.5
8.4
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 28
210
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 360
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 21 to 29
26
Strength to Weight: Bending, points 28 to 35
23
Thermal Diffusivity, mm2/s 77
2.9
Thermal Shock Resistance, points 9.0 to 13
22

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0 to 0.3
24 to 26
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 0 to 0.35
8.0 to 11
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0 to 0.5
Nickel (Ni), % 0
58.8 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 0.9
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0.1 to 0.2
Vanadium (V), % 0.050 to 0.2
0
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0.010 to 0.1
Residuals, % 0 to 0.15
0