MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. EN AC-44200 Aluminum

Both 6008 aluminum and EN AC-44200 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is EN AC-44200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 9.1 to 17
6.2
Fatigue Strength, MPa 55 to 88
63
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 200 to 290
180
Tensile Strength: Yield (Proof), MPa 100 to 220
86

Thermal Properties

Latent Heat of Fusion, J/g 410
570
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 620
580
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 190
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
35
Electrical Conductivity: Equal Weight (Specific), % IACS 160
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.5
Embodied Carbon, kg CO2/kg material 8.5
7.7
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1180
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 28
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 360
51
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
55
Strength to Weight: Axial, points 21 to 29
20
Strength to Weight: Bending, points 28 to 35
28
Thermal Diffusivity, mm2/s 77
59
Thermal Shock Resistance, points 9.0 to 13
8.4

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
85.2 to 89.5
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0 to 0.050
Iron (Fe), % 0 to 0.35
0 to 0.55
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0 to 0.35
Silicon (Si), % 0.5 to 0.9
10.5 to 13.5
Titanium (Ti), % 0 to 0.1
0 to 0.15
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.15