MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. C18600 Copper

6008 aluminum belongs to the aluminum alloys classification, while C18600 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 9.1 to 17
8.0 to 11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 120 to 170
310 to 340
Tensile Strength: Ultimate (UTS), MPa 200 to 290
520 to 580
Tensile Strength: Yield (Proof), MPa 100 to 220
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 620
1070
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 190
280
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
70
Electrical Conductivity: Equal Weight (Specific), % IACS 160
71

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.5
2.9
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 28
44 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 360
1060 to 1180
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 21 to 29
16 to 18
Strength to Weight: Bending, points 28 to 35
16 to 17
Thermal Diffusivity, mm2/s 77
81
Thermal Shock Resistance, points 9.0 to 13
19 to 20

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Chromium (Cr), % 0 to 0.3
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0 to 0.3
96.5 to 99.55
Iron (Fe), % 0 to 0.35
0.25 to 0.8
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0.5 to 0.9
0
Titanium (Ti), % 0 to 0.1
0.050 to 0.5
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0
0 to 0.5