MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. C70260 Copper

6008 aluminum belongs to the aluminum alloys classification, while C70260 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 9.1 to 17
9.5 to 19
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 120 to 170
320 to 450
Tensile Strength: Ultimate (UTS), MPa 200 to 290
520 to 760
Tensile Strength: Yield (Proof), MPa 100 to 220
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 640
1060
Melting Onset (Solidus), °C 620
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 190
160
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 160
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.5
2.7
Embodied Energy, MJ/kg 160
43
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 28
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 360
710 to 1810
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 21 to 29
16 to 24
Strength to Weight: Bending, points 28 to 35
16 to 21
Thermal Diffusivity, mm2/s 77
45
Thermal Shock Resistance, points 9.0 to 13
18 to 27

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
95.8 to 98.8
Iron (Fe), % 0 to 0.35
0
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0
Nickel (Ni), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.5 to 0.9
0.2 to 0.7
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5