MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. N06007 Nickel

6008 aluminum belongs to the aluminum alloys classification, while N06007 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1 to 17
38
Fatigue Strength, MPa 55 to 88
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 120 to 170
470
Tensile Strength: Ultimate (UTS), MPa 200 to 290
690
Tensile Strength: Yield (Proof), MPa 100 to 220
260

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 620
1260
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 190
10
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.5
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1180
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 28
200
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 360
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 21 to 29
23
Strength to Weight: Bending, points 28 to 35
21
Thermal Diffusivity, mm2/s 77
2.7
Thermal Shock Resistance, points 9.0 to 13
18

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.3
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.3
1.5 to 2.5
Iron (Fe), % 0 to 0.35
18 to 21
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0