MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. N06603 Nickel

6008 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.1 to 17
28
Fatigue Strength, MPa 55 to 88
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 120 to 170
480
Tensile Strength: Ultimate (UTS), MPa 200 to 290
740
Tensile Strength: Yield (Proof), MPa 100 to 220
340

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 620
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
11
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 160
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.5
8.4
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 28
170
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 360
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 21 to 29
25
Strength to Weight: Bending, points 28 to 35
22
Thermal Diffusivity, mm2/s 77
2.9
Thermal Shock Resistance, points 9.0 to 13
20

Alloy Composition

Aluminum (Al), % 96.5 to 99.1
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0 to 0.3
24 to 26
Copper (Cu), % 0 to 0.3
0 to 0.5
Iron (Fe), % 0 to 0.35
8.0 to 11
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0 to 0.15
Nickel (Ni), % 0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0.5 to 0.9
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0.010 to 0.25
Vanadium (V), % 0.050 to 0.2
0
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 0.2
0.010 to 0.1
Residuals, % 0 to 0.15
0