MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. 444.0 Aluminum

Both 6012 aluminum and 444.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is 444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 9.1 to 11
25
Fatigue Strength, MPa 55 to 100
51
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 220 to 320
190
Tensile Strength: Yield (Proof), MPa 110 to 260
83

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 160
160
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
39
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
49
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
53
Strength to Weight: Axial, points 22 to 32
20
Strength to Weight: Bending, points 29 to 37
28
Thermal Diffusivity, mm2/s 62
67
Thermal Shock Resistance, points 10 to 14
8.8

Alloy Composition

Aluminum (Al), % 92.2 to 98
90.5 to 93.5
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.5
0 to 0.6
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0 to 0.1
Manganese (Mn), % 0.4 to 1.0
0 to 0.35
Silicon (Si), % 0.6 to 1.4
6.5 to 7.5
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.3
0 to 0.35
Residuals, % 0
0 to 0.15