MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. ACI-ASTM CH20 Steel

6012 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CH20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1 to 11
38
Fatigue Strength, MPa 55 to 100
290
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 220 to 320
610
Tensile Strength: Yield (Proof), MPa 110 to 260
350

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 160
14
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1170
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
200
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 22 to 32
22
Strength to Weight: Bending, points 29 to 37
21
Thermal Diffusivity, mm2/s 62
3.7
Thermal Shock Resistance, points 10 to 14
15

Alloy Composition

Aluminum (Al), % 92.2 to 98
0
Bismuth (Bi), % 0 to 0.7
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.3
22 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
54.7 to 66
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
12 to 15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.4
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0