MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. AISI 384 Stainless Steel

6012 aluminum belongs to the aluminum alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 220 to 320
480

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1170
150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 22 to 32
17
Strength to Weight: Bending, points 29 to 37
17
Thermal Diffusivity, mm2/s 62
4.3
Thermal Shock Resistance, points 10 to 14
11

Alloy Composition

Aluminum (Al), % 92.2 to 98
0
Bismuth (Bi), % 0 to 0.7
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.3
15 to 17
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
60.9 to 68
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Nickel (Ni), % 0
17 to 19
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.6 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0