MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. ASTM B817 Type I

6012 aluminum belongs to the aluminum alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 9.1 to 11
4.0 to 13
Fatigue Strength, MPa 55 to 100
360 to 520
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 220 to 320
770 to 960
Tensile Strength: Yield (Proof), MPa 110 to 260
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 640
1600
Melting Onset (Solidus), °C 570
1550
Specific Heat Capacity, J/kg-K 890
560
Thermal Conductivity, W/m-K 160
7.1
Thermal Expansion, µm/m-K 23
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.9
4.4
Embodied Carbon, kg CO2/kg material 8.2
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
35
Strength to Weight: Axial, points 22 to 32
48 to 60
Strength to Weight: Bending, points 29 to 37
42 to 49
Thermal Diffusivity, mm2/s 62
2.9
Thermal Shock Resistance, points 10 to 14
54 to 68

Alloy Composition

Aluminum (Al), % 92.2 to 98
5.5 to 6.8
Bismuth (Bi), % 0 to 0.7
0
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 0.6 to 1.4
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.2
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0
0 to 0.4