MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. AZ91B Magnesium

6012 aluminum belongs to the aluminum alloys classification, while AZ91B magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is AZ91B magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
46
Elongation at Break, % 9.1 to 11
5.0
Fatigue Strength, MPa 55 to 100
79
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
18
Shear Strength, MPa 130 to 190
140
Tensile Strength: Ultimate (UTS), MPa 220 to 320
240
Tensile Strength: Yield (Proof), MPa 110 to 260
160

Thermal Properties

Latent Heat of Fusion, J/g 400
360
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 570
470
Specific Heat Capacity, J/kg-K 890
990
Thermal Conductivity, W/m-K 160
73
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
11
Electrical Conductivity: Equal Weight (Specific), % IACS 140
58

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.9
1.7
Embodied Carbon, kg CO2/kg material 8.2
22
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1170
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
11
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
280
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
69
Strength to Weight: Axial, points 22 to 32
38
Strength to Weight: Bending, points 29 to 37
49
Thermal Diffusivity, mm2/s 62
42
Thermal Shock Resistance, points 10 to 14
14

Alloy Composition

Aluminum (Al), % 92.2 to 98
8.3 to 9.7
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
87.9 to 91.2
Manganese (Mn), % 0.4 to 1.0
0.13 to 0.5
Nickel (Ni), % 0
0 to 0.030
Silicon (Si), % 0.6 to 1.4
0 to 0.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0.35 to 1.0
Residuals, % 0 to 0.15
0