MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. EN 1.7335 Steel

6012 aluminum belongs to the aluminum alloys classification, while EN 1.7335 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is EN 1.7335 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.1 to 11
21 to 22
Fatigue Strength, MPa 55 to 100
200 to 220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 130 to 190
310 to 330
Tensile Strength: Ultimate (UTS), MPa 220 to 320
500 to 520
Tensile Strength: Yield (Proof), MPa 110 to 260
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 160
44
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1170
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
91 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
210 to 260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 22 to 32
18
Strength to Weight: Bending, points 29 to 37
18
Thermal Diffusivity, mm2/s 62
12
Thermal Shock Resistance, points 10 to 14
15

Alloy Composition

Aluminum (Al), % 92.2 to 98
0
Bismuth (Bi), % 0 to 0.7
0
Carbon (C), % 0
0.080 to 0.18
Chromium (Cr), % 0 to 0.3
0.7 to 1.2
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.5
96.4 to 98.4
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.6 to 1.4
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0