MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. EN 2.4663 Nickel

6012 aluminum belongs to the aluminum alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.1 to 11
40
Fatigue Strength, MPa 55 to 100
250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 130 to 190
540
Tensile Strength: Ultimate (UTS), MPa 220 to 320
780
Tensile Strength: Yield (Proof), MPa 110 to 260
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 8.2
11
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
250
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 22 to 32
25
Strength to Weight: Bending, points 29 to 37
22
Thermal Diffusivity, mm2/s 62
3.5
Thermal Shock Resistance, points 10 to 14
22

Alloy Composition

Aluminum (Al), % 92.2 to 98
0.7 to 1.4
Bismuth (Bi), % 0 to 0.7
0
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.3
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.5
0 to 2.0
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.2
Molybdenum (Mo), % 0
8.5 to 10
Nickel (Ni), % 0
48 to 59.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.6 to 1.4
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.2 to 0.6
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0