MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. Grade CY40 Nickel

6012 aluminum belongs to the aluminum alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.1 to 11
34
Fatigue Strength, MPa 55 to 100
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 220 to 320
540
Tensile Strength: Yield (Proof), MPa 110 to 260
220

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 570
1300
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 160
14
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.2
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1170
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
150
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 22 to 32
18
Strength to Weight: Bending, points 29 to 37
18
Thermal Diffusivity, mm2/s 62
3.7
Thermal Shock Resistance, points 10 to 14
16

Alloy Composition

Aluminum (Al), % 92.2 to 98
0
Bismuth (Bi), % 0 to 0.7
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0 to 0.3
14 to 17
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
0 to 11
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Nickel (Ni), % 0
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.6 to 1.4
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0