MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. Sintered 2014 Aluminum

Both 6012 aluminum and sintered 2014 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 9.1 to 11
0.5 to 3.0
Fatigue Strength, MPa 55 to 100
52 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 220 to 320
140 to 290
Tensile Strength: Yield (Proof), MPa 110 to 260
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 570
560
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
33
Electrical Conductivity: Equal Weight (Specific), % IACS 140
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
68 to 560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
47
Strength to Weight: Axial, points 22 to 32
13 to 27
Strength to Weight: Bending, points 29 to 37
20 to 33
Thermal Diffusivity, mm2/s 62
51
Thermal Shock Resistance, points 10 to 14
6.2 to 13

Alloy Composition

Aluminum (Al), % 92.2 to 98
91.5 to 96.3
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
3.5 to 5.0
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0.2 to 0.8
Manganese (Mn), % 0.4 to 1.0
0
Silicon (Si), % 0.6 to 1.4
0 to 1.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0
0 to 1.5