MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. C61800 Bronze

6012 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.1 to 11
26
Fatigue Strength, MPa 55 to 100
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 130 to 190
310
Tensile Strength: Ultimate (UTS), MPa 220 to 320
740
Tensile Strength: Yield (Proof), MPa 110 to 260
310

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 640
1050
Melting Onset (Solidus), °C 570
1040
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 160
64
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
13
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.2
3.1
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
150
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 22 to 32
25
Strength to Weight: Bending, points 29 to 37
22
Thermal Diffusivity, mm2/s 62
18
Thermal Shock Resistance, points 10 to 14
26

Alloy Composition

Aluminum (Al), % 92.2 to 98
8.5 to 11
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
86.9 to 91
Iron (Fe), % 0 to 0.5
0.5 to 1.5
Lead (Pb), % 0.4 to 2.0
0 to 0.020
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0
Silicon (Si), % 0.6 to 1.4
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0 to 0.020
Residuals, % 0
0 to 0.5