MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. C67300 Bronze

6012 aluminum belongs to the aluminum alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.1 to 11
12
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
41
Shear Strength, MPa 130 to 190
300
Tensile Strength: Ultimate (UTS), MPa 220 to 320
500
Tensile Strength: Yield (Proof), MPa 110 to 260
340

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 640
870
Melting Onset (Solidus), °C 570
830
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 160
95
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
22
Electrical Conductivity: Equal Weight (Specific), % IACS 140
25

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
55
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
550
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 48
20
Strength to Weight: Axial, points 22 to 32
17
Strength to Weight: Bending, points 29 to 37
17
Thermal Diffusivity, mm2/s 62
30
Thermal Shock Resistance, points 10 to 14
16

Alloy Composition

Aluminum (Al), % 92.2 to 98
0 to 0.25
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
58 to 63
Iron (Fe), % 0 to 0.5
0 to 0.5
Lead (Pb), % 0.4 to 2.0
0.4 to 3.0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
2.0 to 3.5
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0.6 to 1.4
0.5 to 1.5
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
27.2 to 39.1
Residuals, % 0
0 to 0.5