MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. C73100 Nickel Silver

6012 aluminum belongs to the aluminum alloys classification, while C73100 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is C73100 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.1 to 11
3.4 to 8.0
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
43
Shear Strength, MPa 130 to 190
260 to 370
Tensile Strength: Ultimate (UTS), MPa 220 to 320
450 to 640
Tensile Strength: Yield (Proof), MPa 110 to 260
420 to 590

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
1030
Melting Onset (Solidus), °C 570
1000
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 160
35
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
21 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
790 to 1560
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 22 to 32
15 to 21
Strength to Weight: Bending, points 29 to 37
15 to 20
Thermal Diffusivity, mm2/s 62
11
Thermal Shock Resistance, points 10 to 14
15 to 21

Alloy Composition

Aluminum (Al), % 92.2 to 98
0
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
70.8 to 78
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0.4 to 2.0
0 to 0.050
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Nickel (Ni), % 0
4.0 to 6.0
Silicon (Si), % 0.6 to 1.4
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
18 to 22
Residuals, % 0
0 to 0.5