MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. C86300 Bronze

6012 aluminum belongs to the aluminum alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.1 to 11
14
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 220 to 320
850
Tensile Strength: Yield (Proof), MPa 110 to 260
480

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
920
Melting Onset (Solidus), °C 570
890
Specific Heat Capacity, J/kg-K 890
420
Thermal Conductivity, W/m-K 160
35
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1170
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
100
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
1030
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 48
20
Strength to Weight: Axial, points 22 to 32
30
Strength to Weight: Bending, points 29 to 37
25
Thermal Diffusivity, mm2/s 62
11
Thermal Shock Resistance, points 10 to 14
28

Alloy Composition

Aluminum (Al), % 92.2 to 98
5.0 to 7.5
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
60 to 66
Iron (Fe), % 0 to 0.5
2.0 to 4.0
Lead (Pb), % 0.4 to 2.0
0 to 0.2
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0.6 to 1.4
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
22 to 28
Residuals, % 0
0 to 1.0